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Abstract

A polynomial projectof 1 of degrealon H (C") is said tgpreserve homogeneous partial differential
equation{HPDE) of degreéif for every f € H(C") and every homogeneous polynomial of degree
k,q(z) = Zm:kamz“x there holds the implicatiomy(D) f =0 = ¢(D)II(f) = 0. We prove that
a polynomial projectol] preserves HPDE of degrée 1<k <d, if and only if there are analytic
functionalspy, 41, ..., g € H'(C") with p;(1) # 0, i =k, ...,d, such thafll is represented
in the following form

()= au(Pus+ Y Dy
o <k k<lol<d
with somea,’s € H'(C"), |a| <k, whereu,(z) := z*/a!. Moreover, we give an example of polyno-
mial projectors preserving HPDE of degie@ > 1) without preserving HPDE of smaller degree. We
also give a characterization of Abel-Gontcharoff projectors as the only Birkhoff polynomial projectors
that preserve all HPDE.
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1. Introduction

As usual, we denote by (C") the space of entire functions @' equipped with its
usual compact convergence topology, &dC") the space of polynomials dif* of total
degree at most. A polynomial projector of degreeid defined as a continuous linear map
IT from H(C") to P, (C") for whichI1(p) = p for everyp € P,(C"). Such a projector
I is said topreserve homogeneous patrtial differential equatiGhBDE) of degree kf for
every f € H(C") and every homogeneous polynomial of degkeg(z) = >,y ax2”,
we have

q(D)f =0= q(D)II(f) =0, 1)

whereq (D) = th\:k ayD*, D* = 6'“'/6&?1 ... 0z0 and|a| = Z’]’-:l a; denotes the
length of the multi-indext = (a1, ..., o).

In [3] Calvi and Filipsson give a precise description of the polynomial projectors preserv-
ing all HPDE. In particular they show that a polynomial projector preserves all HPDE as
soon as it preserves HPDE of degree 1. Then naturally arises the question of the existence
of polynomial projectors preserving HPDE of degieg > 1) without preserving HPDE
of smaller degree. In this note we prove that such projectors do indeed exist and we extend
the basic structure theorem proved in [3] to this more general case. As a consequence we
show that a polynomial projector which preserves HPDE of delgreszessarily preserves
HPDE of every degree not smaller thian

We also complete the results of [3] in another direction. Calviand Filipsson have used their
results to give a new characterization of Kergin interpolation. Namely, they have shown that
the interpolation space of a polynomial projector of degrésee the definition below) that
preserves HPDE contains no more than—and only Kergin interpolation projector effectively
contains—d+ 1 Dirac (point-evaluation) functionals. Here we give a characterization of
Abel-Gontcharoff projectors as the only Birkhoff polynomial projectors that preserve all
HPDE (the definition are recalled in the text).

In [8] (see also [9]) Petersson has settled a convenient formalism (using the concept of
pairing of Banach spaces) and extended results of [3] to Banach spaces. Our Theorem 1 is
likely to have a similar infinite dimensional counterpart.

The main results of this paper were announced without proof in [4].

2. Definitions and background

We recall some definitions and results from [3]. A polynomial projetiaran be com-
pletely described by the so callsgace of interpolation conditions(IT) c H’(C"), where
H'(C™") denotes the space of the linear continuous functionald 6i") whose elements
are usually called analytic functionals. The spacgl) is defined as follows : an element
¢ € H'(C") belongs ta3(IT) if and only if for any f € H(C") we have

o(f) = eI(f)).
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Let{p, : |o| <d} be a basis oP;(C"). Then we can represeht as

N(f)= Y ax(f)ps f € H(C") @)

o <d
with somea,’s € H'(C"), and3(I1) is given by
S(IT) = span{g, : |o| <d}.

In particular, in (2), we may takg, = u, Whereu,(z) = z%/a!, z* = [[}_1z;,
al: = [[}_1 ;! Notice that the dimension af(IT) is

Na(n) = (”jd)

which coincides with the dimension &f;(C"). Moreover, the restriction af(I1) toP;(C")
is the dual spac®;; (C").

Conversely, ifl is a subspace aff’(C") of dimensionN,;(n) such that the restriction of
its element tdP,; (C") spansP’;(C") then there exists a unique polynomial projegtat)
such that= 3 (p (1)) . In that case we say thhis an interpolation space foP;(C") and,
for p € P4(C"), we have

. f)=peolp)=¢(f), VYeel

Notice that for every projectdr we haveyp (J(I1)) = I1.
Let IT be a polynomial projector preserving HPDE of degree 1. A functiencalled
ridge functionif it is of the form f(z) = h(a.z) with h € H(C), where

n
y'z:=2yj~zj\7’y,ze@”.
j=1

Using (1) with polynomialgy of degree 1, we can easily see thhatalso preserves ridge
functions, that is, iff (z) = h(a.z) then there exists a univariate polynompeduch that

II(h(a.-))(z) = p(a.2).

This formula defines a univariate polynomial projector which is denoteld hysatisfying
the following property

I, (h)(a.z) = (h(a.))(z).

Let ug, 114, - - -, 1ty bed + 1 not necessarily distinct analytic functionals {C") such
thatu; (1) #0fori =0,1,...,d. Then, it was proved if8] that

I := span{Dp, : o/ <d)} )

is an interpolation space fd,;(C"), where for an analytic functiona € H'(C") and a
multi-index ., the derivativeD* ¢ is defined as the analytic functional given by

D*p(f) == @(D* ).
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The projector corresponding to spdda (3) is called DTaylor projector. It was introduced
by Calvi [2].
Fora € 7 anda € C", the analytic functionaD*[a] is defined by

D*[a](f) = D" f(a), f € H(C").

It is calleddiscrete functional. For = 0, we use the abbreviatiom°[a] = [«]. Typical
D-Taylor projector is the Abel-Gontcharoff projector when:= [q;] in (3). For other
natural examples, see [1-3,7].

Theorem A (Calvi and Filipsson [3]). Let IT be a polynomial projector of degree d in
H(C™). Then the following four conditions are equivalent.

(1) IT preserves all HPDE.

(2) II preserves ridge functions.

(3) ITis a D-Taylor projector.

(4) There are analytic functionalgy, 14, - . ., #y € H'(C") with i; (1)#0, i=0, 1, ....d,
such thatlT is represented in the following form

()= D Dy (fus. 4)

lof<d

This theorem shows that a polynomial projeckbmpreserving HPDE of degree 1 also
preserves all HPDE.

3. Polynomial projectors preserving HPDE

In this section we extend Theorem A (and D-Taylor representation) to polynomial pro-
jectors preserving HPDE of degree 1<k <d. We recall that the Laplace transform of an
analytic functionalp € H'(C") is the entire functiorp defined by

Q(w) = @(ey), we C",

wheree,,(z) := exp(w.z). The mappingp — @ is an isomorphism between the space of
analytic functionals and the space of entire functions of exponential type (for details, see
[5, p.108]). Notice thafa] = ¢, and(D*p)(w) = w*P(w).

Theorem 1. A polynomial projectol] of degree d preserves HPDE of degkeel <k <d,
if and only if there are analytic functionals, 1,1, ..., uy € H'(C")withp, (1) #0, i =

k,...,d, such thatll is represented in the following form
()= a(Pus+ Y, D'uy(fuy (5)
|oe| <k k<|u)<d

with somez,’'s € H'(C"), || < k.

Proof. We first prove the sufficiency part of the theorem. Suppose thatthexg.are , u; €
H’'(C") with u,(1) # 0, s =k, ..., d, such thafll is represented as in (5). We join any



Dinh-Diing et al. / Journal of Approximation Theory 135 (2005) 221232 225

analytic functionalgyg, i1, . . ., pe_1 With 1, (1) #0, s =0, ..., k — 1, to these analytic
functionals. Consider the D-Taylor projecthf corresponding to the interpolation space
span{Du, : |«|<d}. Due to (4)IT may be represented as

()= Y D'y (fus (6)
lo| <d

with ug, p1f, ..., 1, € H'(C")anduy (1) # 0, s =0, 1, ..., d. Fromthe lastrepresentation
and (5), we derive that

Dy =Y cgDluiy,  k<|ol<d. )
IBI<d
Applying both sides of (7) tag, |f|<d, we get
Dy = Dy, k<] <d.

Hence,

()= D'Uy(Hua+ Y Dy (flus.

|or] <k k<|o|<d

We now prove thall preserves HPDE of degré&elLetq be a homogeneous polynomial of
degreek and f € H(C") such thalg(D)f = 0. We prove thay (D)II(f) = 0. Indeed,
since

aD)( D2 Dy (Pruz)=a(D)( Y an( ) =0,

|o| <k o] <k

we have

gD = gD =gD)( Y Dy (Hus).

k<lul<d
Because the D-Taylor projectdl’ preserves HPDE of degréewe obtain that
q(D)YI1(f)) = ¢(D)AT'(f)) = 0.
We pass to the necessary part of the theorem. Consider the following represent&tion of
()= Y ax(fus.
ol <d
Take a pointw € C" with w # 0. Suppose thaic,) 5=, ¢s € C, is a sequence such that
Z csw® = 0. (8)
Is|=k
For the homogeneous polynomial of degkee

q(2) = Z ¢’

|ot|=k
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by (8) we have

q(D)(ew) = 0.

Sincell preserves HPDE of degrégewe obtain that
q(D)(Il(ey)) = 0.
From the identity
Mew) = Y @wuz,
0< ol <d
we derive that
F@ =Y Y etuw)(Dus()=0. (©)
Is|=k lof <d

By virtue of the equality

s _ Jug—s, azs,
D (uq) = { 0, otherwise,

we have

FQ=) ¢ > (w2

Is|=k lul<d, azs

:ch Z Apys(w)up(z)

Isl=k B <d—k

= Z (chaﬁﬂ(w))uﬁ(z).

Bl <d—k |sl=k
This means thaf is a polynomial of degreé — k that is identically equal to zero due to
(9). Hence, we proved that if fae,) s =«, ¢s € C, there holds (8), then we have
> esagy(w) =0, |BI<d —k. (10)
|s|=k
We will prove that if f andw are fixed so thaiv # 0 and|f| <d — k, then

aﬁ—i—s (w)
wﬂ—l—s

= const (11)

. . 0
for everyswith |s| = k (for convenience we prt = 0). There are two cases:

CaseA: wf # 0. In this case, fokc,) 5=k, ¢s € C, the equality

Z c,wlts =0 (12)

|s|=k
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implies that
Z csw® = 0. (13)
|s|=k

By (10) we deduce the implication
Z cw' =0= Z csapys(w) = 0. (14)

Is|=k Is|=k
Notice that ifa, b € C", b # 0 are given and the equalityc = 0 impliesa.c = 0 for
c € C", then

a/ .

— =const, j=1,...,m.
bj

Therefore, from (12), (13) and (14) we prove (11).

CaseB: w” = 0. In this case, we will show that
apys(w) =0, |s| =k. (15)

Fix s with |s°| = k. Sincew” = 0we canrewrite®+ f = s1+ ' sothatst| = k, || =
\BI<d — k, andw*®" = 0. Applying (10) tow and 8* gives the implication

Z cw' =0= Z C‘g-,C?s‘I»ﬁl(LU) =0.

[s|=k [s|=k
Hence, we have

a. 1w
% = const, |s| = k.
w

In particular, fors = st

Aoy p(w) =1, 2 (w) =0,

Thus, (15) has been proved. Further, we will prove that iind«? are multi-indices with
lengthi, k& <i<d, then

aaw)  Tpw)

Wit 2

(16)

w%

The special case whert = s* + f anda? = 52 + f3 for somef with || <d — k, follows
from (11). This case also implies thatdfis a multi-index with length, k<i<d, and
0= (01,...,0,) € 7" is a vector such that

n

n
Z|5,-|<k, Z(szo, a+deZm,
j=1

j=1
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then

Tyrow) _ ay(w)

wito T (17)

Let us now prove the general case of (16). Obviously, thecasg follows from (11) with
B = 0. Consider the case> k. Notice that ifa® anda? are multi-indices with length,
then there aré®, ..., 8 € 7", (I<i) such that

n

n m
dISI<k, Y 8 =0, ar+) ezl m=1,...1,
j=1

j=1 s=1

and

Applying (17)I times gives (16). By virtue of (16), we can write
ay(w) = bj(w)w”*, w#0, |o =i k<i<d. (18)

Sincea, is an entire function of exponential type, taking= (i) = (id;j)j=1,...,
conclude thab; extends to an holomorphic function @f := C" \ {w : w, = 0}, and
consequently ohJ{_; C! = C"\ {0}. Because an holomorphic function of several complex
variables has no isolated singularities (fB@ Ch.lll, §11]), we may deduce that eakh
extends uniquely to an entire function which is again denotekl byloreover, by (18);

must be an entire function of exponential type too and, therefore, the Laplace transform of
an analytic functional;, e.g.,b; (w) = 7i; (w). Thus we have

ay(w) = W, (w).
By the identity

(D 1) (w) = w*T; (w)

we obtain
aa=Daﬂi, l=k,,d
Summing up we arrive atthe conditions that there are analytic functippalg 1, ..., i, €

H'(C") such thafll is represented as in (5) with somgs € H'(C"), |a|<k. O

From Theorem 1 we can derive some interesting properties of polynomial projectors
preserving HPDE of degrde First of all, observe that the equivalence of Conditions 1 and
4 in Theorem A immediately follows from Theorem 1.

Corollary 1. Ifthe polynomial projectofI of degree d preserves HPDE of degked <k <
d, thenlII preserves also HPDE of all degree greater than
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Corollary 2. If 1 < k<d, there is a polynomial projector of degree d which preserves
HPDE of degree k but not HPDE of all degree smaller than k.

Proof. Observe that as the sgi, : |z|<d} is linearly independent, there exist distinct
Ui, tto € H'(C") such that

M) W=1 j=1.2
(i) pj(ug) =0, 1< 0| <d, j=1,2.

Fix two multi-indicesat, o2 with |a}| = |2?| = k — 1. We have
D“J,uj(u/;) = 5“1'/3, j=12

Consider the polynomial projectdf of degreed defined by

2 .
() =) D uj(NHuy+ Y, DO )us. (19)

j=1 lo) <d, ool a2

Observe thafl is of the form (5), and by Theorem I preserves HPDE of degrde
Suppose now thdll also preserves HPDE of degree- 1. Again by Theorem I1 may be
represented as follows

N = Y aPugt+ Y. D'upy(Hlus. (20)

lof Sk—2 k=1< ol <d
Comparing (19) and (20) gives
DYy =D"py . j=12
Passing to the Laplace transform we have
W w) = v g w),  j=1.2
Hence, by the uniqueness principle we can easily see that
Hy =T =11

becauséi; and,_, are entire functions. Consequently, = .. This contradicts our
construction ofu; and u,. Thus it has been proved thBt does not preserve HPDE of
degreek — 1. By use of Corollary 1 we deduce thHtdoes not also preserve HPDE of any
degree smaller thanh [J

Corollary 3. LetII be a polynomial projector of degree d preserving HPDE of degree
k, 1<k<d.Then there are functionals,, 1 _ 1. ..., #y With 1;(1) = 1 (k<i <d) such
that the set

span{Du, : |a| =s, s =k, ...,d}
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is a proper subset o¥(IT). Moreover,if I1 is represented as i(b) with y;(1) = 1, i =

k,...,d, and if,for somep with | 3| > k, we haveDPy e I(IT) then there exists a relation
d—|p| a
Hp
V= 'ulﬁl + Z Z Cial.. 1 a ‘“;] (21)
j=1 hlz..l;

where eachi; is taken ovef1, 2, ..., n}.

Proof. We just need to prove (21). It follows from (5) that the map

/e Z ay(fug

lof <k—1

is a polynomial projector of degrée-1. In particular, the restrictions of thg's are linearly
independent ofP;,_1(C"). Now, for some coefficients, we have

DFy = Z Colly + Z caD” Wy (22)

o <k—1 k<lol<d

If follows that for everyy with |y| <k — 1, we have

0= Z Coly (Uty).

o <k—1

Since the restrictions of the,’s are linearly independent oR;_1(C") we deduce that
¢y, = 0 for|a| <k — 1. Hence we have

DPy = Z caD* iy

k<ol <d

Now taking the Laplace transforms of both sides and expanding them in power series, we find
by identifying the coefficients that every coefficientmust vanish ifx does not belong to

Z(p) whichis the set of all multi-indicessuch thato| <d, o; >ﬁj, j=1,....n, 0 #p.

Taking out the common factas” on both sides and returning to the functionals, we obtain
the claimed representation[]

4. A characterization of Abel-Gontcharoff projectors

A Birkhoff projectoris called a polynomial projectdrl for which J(IT) is generated
by discrete functionals that is to say by functionals of the fapf{«]. For results on
Birkhoff interpolation we refer t¢6]. The following theorem might seem intuitively clear
but we found no immediate proof. It is worth noting that this result is typical for the higher
dimension. Itis indeed not true in dimension 1 in which the concept of projector preserving
all HPDE reduces to a triviality.
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Theorem 2. LetII be a Birkhoff projector of degree d drf*, n > 2. ThenII preserves all
HPDE if and only if it is an Abel-Gontcharoff projectdhat is,there areay, ..., as € C"
not necessary distinct such that

S(IT) = sparf D*[a] : o] =s, s =0,...,d}.

Proof. The sufficiency part is trivial. We prove that the condition is necessaryk Fer
0,1,...,d, we set

AR :={a € C" : A0, |o| = k, D*[a] € I(ID)}
ands; = cardA (IT). Whens; # 0 we define

Akan = {a,}, a,f, el a,ik},

Wherea,{/ * a,{ for j’ # j. It has been shown if8, Proposition 2] that if1 is a polynomial
projector preserving all HPDE andii*[a] € J(IT) for one multi-index: of lengthk, then
DP[a] e 3(IT) for every multi-indexs of the same lengtk. This implies that

{D*[all:keJ, o=k j=1,...,5)} C (D),

wherelJ is the set of alk such thatd*(IT) is not empty. The set on the left-hand side above
will be denoted byl"(IT). Since this set is linearly independent and siites a Birkhoff
projector it forms a basis d§(IT). Thus, what we need to prove is only that= 1 for
k=0,1,...,d. Forbe C", b # 0, we define the linear mappirigx - from H'(C") into
H'(C) as follows

(b*@)(h) = @(h(b.-)).
It was proved i3, Proposition 1] that the restriction of this mappingXd]) is a linear
mapping from3I(IT) ontoJI(I1,) (see Section 2 for the notation), that is,
b+ I(IT) = I(I1p).
Stepl: We prove thagfzo sk =d + 1. Asn > 1, we can choose a (nonzeiok C”"
so that fork € J the elements.aj, j = 1, ..., s, are pairwise distinct. From the equality

b x D*[a]] = b*D*[b.a]]

for any multi-indexo. of lengthk, and the existence of a multi-indeyof lengthk such that
b* # 0, we deduce that the discrete functionals

DMball, ke, j=1,.... 5. (23)
k

span3(I1,). Moreover, because thg complex number@.a,{ are pairwise distinct, the
discrete functionals in (23) are linearly independent and, therefore, form a basiH .
Consequently, we have

dim(3(I1,)) = Zsk (24)
kel

d
and the claim is proved since ditnI1,)) =d +1and) ,_; sk = > sk.
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Step2: We prove that, <1 fork = 0, ..., d. Suppose to the contrary that therejs
such thaty, >2. We can choose a nonzdrbe C" so tha\‘b*.a,}o = b*.a,fo. Then the set

(DR .al 1. j =1, s0)
contains at mosf, — 1 functionals. Consequently, the cardinality of the set
(D¥[b*all ke d, j=1,..., %) (25)

isatmos(}_,.; sx)—1whichis, inview of Step 1, not greater thauThis is a contradiction,
because the functionals in (25) spaf1,+) which has dimensiod + 1.
The two steps imply that, = 1 fork =0, ..., d, and this concludes the proof[]
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