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Abstract

A polynomial projector�of degreedonH(Cn) is said topreserve homogeneous partial differential
equations(HPDE) of degreek if for everyf ∈ H(Cn) and every homogeneous polynomial of degree
k, q(z) = ∑

|�|=ka�z�, there holds the implication:q(D)f = 0 ⇒ q(D)�(f ) = 0. We prove that
a polynomial projector� preserves HPDE of degreek, 1�k�d, if and only if there are analytic
functionals�k, �k+1, . . . , �d ∈ H ′(Cn) with �i (1) �= 0, i = k, . . . , d, such that� is represented
in the following form

�(f ) =
∑
|�|<k

a�(f )u� +
∑

k � |�|�d

D��|�|u�

with somea�’s ∈ H ′(Cn), |�| < k, whereu�(z) := z�/�!. Moreover, we give an example of polyno-
mial projectors preserving HPDE of degreek (k�1) without preserving HPDE of smaller degree. We
also give a characterization ofAbel–Gontcharoff projectors as the only Birkhoff polynomial projectors
that preserve all HPDE.
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1. Introduction

As usual, we denote byH(Cn) the space of entire functions onCn equipped with its
usual compact convergence topology, andPd(Cn) the space of polynomials onCn of total
degree at mostd. A polynomial projector of degree dis defined as a continuous linear map
� from H(Cn) to Pd(Cn) for which �(p) = p for everyp ∈ Pd(Cn). Such a projector
� is said topreserve homogeneous partial differential equations(HPDE)of degree kif for
everyf ∈ H(Cn) and every homogeneous polynomial of degreek, q(z) = ∑

|�|=k a�z�,
we have

q(D)f = 0 ⇒ q(D)�(f ) = 0, (1)

whereq(D) := ∑
|�|=k a�D�, D� = �|�|

/�z
�1
1 . . . �z

�n
n , and|�| = ∑n

j=1 �j denotes the
length of the multi-index� = (�1, . . . , �n).

In [3] Calvi and Filipsson give a precise description of the polynomial projectors preserv-
ing all HPDE. In particular they show that a polynomial projector preserves all HPDE as
soon as it preserves HPDE of degree 1. Then naturally arises the question of the existence
of polynomial projectors preserving HPDE of degreek (k�1) without preserving HPDE
of smaller degree. In this note we prove that such projectors do indeed exist and we extend
the basic structure theorem proved in [3] to this more general case. As a consequence we
show that a polynomial projector which preserves HPDE of degreek necessarily preserves
HPDE of every degree not smaller thank.

We also complete the results of [3] in another direction. Calvi and Filipsson have used their
results to give a new characterization of Kergin interpolation. Namely, they have shown that
the interpolation space of a polynomial projector of degreed (see the definition below) that
preserves HPDE contains no more than—and only Kergin interpolation projector effectively
contains—d+ 1 Dirac (point-evaluation) functionals. Here we give a characterization of
Abel–Gontcharoff projectors as the only Birkhoff polynomial projectors that preserve all
HPDE (the definition are recalled in the text).

In [8] (see also [9]) Petersson has settled a convenient formalism (using the concept of
pairing of Banach spaces) and extended results of [3] to Banach spaces. Our Theorem 1 is
likely to have a similar infinite dimensional counterpart.

The main results of this paper were announced without proof in [4].

2. Definitions and background

We recall some definitions and results from [3]. A polynomial projector� can be com-
pletely described by the so calledspace of interpolation conditions�(�) ⊂ H ′(Cn), where
H ′(Cn) denotes the space of the linear continuous functionals onH(Cn) whose elements
are usually called analytic functionals. The space�(�) is defined as follows : an element
� ∈ H ′(Cn) belongs to�(�) if and only if for anyf ∈ H(Cn) we have

�(f ) = �(�(f )).
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Let {p� : |�|�d} be a basis ofPd(Cn). Then we can represent� as

�(f ) =
∑

|�|�d

a�(f )p�, f ∈ H(Cn) (2)

with somea�’s ∈ H ′(Cn), and�(�) is given by

�(�) = span{a� : |�|�d}.
In particular, in (2), we may takep� = u� whereu�(z) := z�/�!, z� := ∏n

j=1 z
�j

j ,

�! : = ∏n
j=1 �j !. Notice that the dimension of�(�) is

Nd(n) :=
(

n + d

n

)
,

which coincides with the dimension ofPd(Cn). Moreover, the restriction of�(�) toPd(Cn)

is the dual spaceP∗
d (Cn).

Conversely, ifI is a subspace ofH ′(Cn) of dimensionNd(n) such that the restriction of
its element toPd(Cn) spansP∗

d (Cn) then there exists a unique polynomial projector℘ (I)
such thatI= �(℘ (I)) . In that case we say thatI is an interpolation space forPd(Cn) and,
for p ∈ Pd(Cn), we have

℘ (I, f ) = p ⇔ �(p) = �(f ), ∀� ∈ I.
Notice that for every projector� we have℘ (�(�)) = �.

Let � be a polynomial projector preserving HPDE of degree 1. A functionf is called
ridge functionif it is of the formf (z) = h(a.z) with h ∈ H(C), where

y · z :=
n∑

j=1

yj · zj ∀y, z ∈ Cn.

Using (1) with polynomialsq of degree 1, we can easily see that� also preserves ridge
functions, that is, iff (z) = h(a.z) then there exists a univariate polynomialp such that

�(h(a.·))(z) = p(a.z).

This formula defines a univariate polynomial projector which is denoted by�a , satisfying
the following property

�a(h)(a.z) = �(h(a.·))(z).

Let �0, �1, . . . , �d be d + 1 not necessarily distinct analytic functionals onH(Cn) such
that�i (1) �= 0 for i = 0, 1, . . . , d. Then, it was proved in[3] that

I := span{D��|�| : |�|�d} (3)

is an interpolation space forPd(Cn), where for an analytic functional� ∈ H ′(Cn) and a
multi-index�, the derivativeD�� is defined as the analytic functional given by

D��(f ) := �(D�f ).
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The projector corresponding to spaceI in (3) is called D-Taylor projector. It was introduced
by Calvi [2].

For� ∈ Zn+ anda ∈ Cn, the analytic functionalD�[a] is defined by

D�[a](f ) = D�f (a), f ∈ H(Cn).

It is calleddiscrete functional. For� = 0, we use the abbreviation:D0[a] = [a]. Typical
D-Taylor projector is the Abel–Gontcharoff projector when�i := [ai] in (3). For other
natural examples, see [1–3,7].

Theorem A (Calvi and Filipsson [3]). Let � be a polynomial projector of degree d in
H(Cn). Then the following four conditions are equivalent.

(1) � preserves all HPDE.
(2) � preserves ridge functions.
(3) � is a D-Taylor projector.
(4) There are analytic functionals�0, �1, . . . , �d ∈ H ′(Cn) with�i (1)�=0, i=0, 1, . . ., d,

such that� is represented in the following form

�(f ) =
∑

|�|�d

D��|�|(f )u�. (4)

This theorem shows that a polynomial projector� preserving HPDE of degree 1 also
preserves all HPDE.

3. Polynomial projectors preserving HPDE

In this section we extend Theorem A (and D-Taylor representation) to polynomial pro-
jectors preserving HPDE of degreek, 1�k�d. We recall that the Laplace transform of an
analytic functional� ∈ H ′(Cn) is the entire function̂� defined by

�̂(w) := �(ew), w ∈ Cn,

whereew(z) := exp(w.z). The mapping� �→ �̂ is an isomorphism between the space of
analytic functionals and the space of entire functions of exponential type (for details, see
[5, p.108]). Notice that̂[a] = ea and(D̂��)(w) = w��̂(w).

Theorem 1. A polynomial projector� of degree d preserves HPDE of degreek, 1�k�d,

if and only if there are analytic functionals�k, �k+1, . . . , �d ∈ H ′(Cn) with�i (1) �= 0, i =
k, . . . , d, such that� is represented in the following form

�(f ) =
∑
|�|<k

a�(f )u� +
∑

k � |�|�d

D��|�|(f )u� (5)

with somea�’s ∈ H ′(Cn), |�| < k.

Proof. We first prove the sufficiency part of the theorem. Suppose that there are�k, . . . , �d ∈
H ′(Cn) with �s(1) �= 0, s = k, . . . , d, such that� is represented as in (5). We join any
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analytic functionals�0, �1, . . . , �k−1 with �s(1) �= 0, s = 0, . . . , k − 1, to these analytic
functionals. Consider the D-Taylor projector�′ corresponding to the interpolation space
span{D��|�| : |�|�d}. Due to (4)�′ may be represented as

�′(f ) =
∑

|�|�d

D��′|�|(f )u� (6)

with�′
0, �′

1, . . . , �′
d ∈ H ′(Cn) and�′

s(1) �= 0, s = 0, 1, . . . , d. From the last representation
and (5), we derive that

D��|�| =
∑

|�|�d

c�D��′
|�|, k� |�|�d. (7)

Applying both sides of (7) tou�, |�|�d, we get

D��|�| = D��′|�|, k� |�|�d.

Hence,

�′(f ) =
∑
|�|<k

D��′|�|(f )u� +
∑

k � |�|�d

D��|�|(f )u�.

We now prove that� preserves HPDE of degreek. Letq be a homogeneous polynomial of
degreek andf ∈ H(Cn) such thatq(D)f = 0. We prove thatq(D)�(f ) = 0. Indeed,
since

q(D)
( ∑

|�|<k

D��′|�|(f )u�

)
= q(D)

( ∑
|�|<k

a�(f )u�

)
= 0,

we have

q(D)(�(f )) = q(D)(�′(f )) = q(D)
( ∑

k � |�|�d

D��|�|(f )u�

)
.

Because the D-Taylor projector�′ preserves HPDE of degreek, we obtain that

q(D)(�(f )) = q(D)(�′(f )) = 0.

We pass to the necessary part of the theorem. Consider the following representation of�

�(f ) =
∑

|�|�d

a�(f )u�.

Take a pointw ∈ Cn with w �= 0. Suppose that(cs)|s|=k, cs ∈ C, is a sequence such that∑
|s|=k

csw
s = 0. (8)

For the homogeneous polynomial of degreek

q(z) :=
∑
|�|=k

csz
s,
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by (8) we have

q(D)(ew) = 0.

Since� preserves HPDE of degreek, we obtain that

q(D)(�(ew)) = 0.

From the identity

�(ew) =
∑

0� |�|�d

â�(w)u�,

we derive that

F (z) :=
∑
|s|=k

∑
|�|�d

cs â�(w)
(
Dsu�(z)

)
= 0. (9)

By virtue of the equality

Ds(u�) =
{

u�−s , ��s,

0, otherwise,

we have

F (z) =
∑
|s|=k

cs

∑
|�|�d, �� s

â�(w)u�−s(z)

=
∑
|s|=k

cs

∑
|�|�d−k

â�+s(w)u�(z)

=
∑

|�|�d−k

( ∑
|s|=k

cs â�+s(w)
)
u�(z).

This means thatF is a polynomial of degreed − k that is identically equal to zero due to
(9). Hence, we proved that if for(cs)|s|=k, cs ∈ C, there holds (8), then we have∑

|s|=k

cs â�+s(w) = 0, |�|�d − k. (10)

We will prove that if� andw are fixed so thatw �= 0 and|�|�d − k, then

â�+s(w)

w�+s
= const (11)

for everys with |s| = k (for convenience we put
0

0
= 0). There are two cases:

CaseA: w� �= 0. In this case, for(cs)|s|=k, cs ∈ C, the equality∑
|s|=k

csw
�+s = 0 (12)



Dinh-Dũng et al. / Journal of Approximation Theory 135 (2005) 221–232 227

implies that∑
|s|=k

csw
s = 0. (13)

By (10) we deduce the implication∑
|s|=k

csw
s = 0 ⇒

∑
|s|=k

cs â�+s(w) = 0. (14)

Notice that ifa, b ∈ Cm, b �= 0 are given and the equalityb.c = 0 impliesa.c = 0 for
c ∈ Cm, then

aj

bj

= const, j= 1, . . . , m.

Therefore, from (12), (13) and (14) we prove (11).

CaseB: w� = 0. In this case, we will show that

â�+s(w) = 0, |s| = k. (15)

Fix s0 with |s0| = k. Sincew� = 0 we can rewrites0+� = s1+�1 so that|s1| = k, |�1| =
|�|�d − k, andws1 = 0. Applying (10) tow and�1 gives the implication∑

|s|=k

csw
s = 0 ⇒

∑
|s|=k

cs âs+�1(w) = 0.

Hence, we have

â
s+�1(w)

ws
= const, |s| = k.

In particular, fors = s1

âs0+�(w) = â
s1+�1(w) = 0.

Thus, (15) has been proved. Further, we will prove that if�1 and�2 are multi-indices with
lengthi, k� i �d, then

â�1(w)

w�1 = â�2(w)

w�2 . (16)

The special case when�1 = s1 + � and�2 = s2 + � for some� with |�|�d − k, follows
from (11). This case also implies that if� is a multi-index with lengthi, k� i �d, and
� = (�1, . . . , �n) ∈ Zn is a vector such that

n∑
j=1

|�j |�k,

n∑
j=1

�j = 0, � + � ∈ Zn+,
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then

â�+�(w)

w�+�
= â�(w)

w� . (17)

Let us now prove the general case of (16). Obviously, the casei = k follows from (11) with
� = 0. Consider the casei > k. Notice that if�1 and�2 are multi-indices with lengthi,
then there are�1, . . . , �l ∈ Zn, (l� i) such that

n∑
j=1

|�s
j |�k,

n∑
j=1

�s
j = 0, �1 +

m∑
s=1

�s ∈ Zn+, m = 1, . . . , l,

and

�2 = �1 +
l∑

s=1

�s .

Applying (17) l times gives (16). By virtue of (16), we can write

â�(w) = bi(w)w�, w �= 0, |�| = i, k� i �d. (18)

Sinceâ� is an entire function of exponential type, taking� = �(i) = (i�ij )j=1,...,n, we
conclude thatbi extends to an holomorphic function onCn

s := Cn \ {w : ws = 0}, and
consequently on

⋃n
s=1 Cn

s = Cn\{0}. Because an holomorphic function of several complex
variables has no isolated singularities (see[10, Ch.III, §11]), we may deduce that eachbi

extends uniquely to an entire function which is again denoted bybi . Moreover, by (18)bi

must be an entire function of exponential type too and, therefore, the Laplace transform of
an analytic functional�i , e.g.,bi(w) = �̂i (w). Thus we have

â�(w) = w��̂i (w).

By the identity

(D̂��i )(w) = w��̂i (w)

we obtain

a� = D��i , i = k, . . . , d.

Summing up we arrive at the conditions that there are analytic functionals�k, �k+1, . . . , �d ∈
H ′(Cn) such that� is represented as in (5) with somea�’s ∈ H ′(Cn), |�|�k. �

From Theorem 1 we can derive some interesting properties of polynomial projectors
preserving HPDE of degreek. First of all, observe that the equivalence of Conditions 1 and
4 in Theorem A immediately follows from Theorem 1.

Corollary 1. If the polynomial projector�of degree d preserves HPDE of degreek, 1�k�
d, then� preserves also HPDE of all degree greater thank.
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Corollary 2. If 1 < k�d, there is a polynomial projector of degree d which preserves
HPDE of degree k but not HPDE of all degree smaller than k.

Proof. Observe that as the set{u� : |�|�d} is linearly independent, there exist distinct
�1, �2 ∈ H ′(Cn) such that

(i) �j (1) = 1, j = 1,2
(ii) �j (u�) = 0, 1� |�|�d, j = 1,2.

Fix two multi-indices�1, �2 with |�1| = |�2| = k − 1. We have

D�j

�j (u�) = ��j �, j = 1,2.

Consider the polynomial projector� of degreed defined by

�(f ) =
2∑

j=1

D�j

�j (f )u�j +
∑

|�|�d, � �=�1,�2

D�[0](f )u�. (19)

Observe that� is of the form (5), and by Theorem 1� preserves HPDE of degreek.
Suppose now that� also preserves HPDE of degreek − 1. Again by Theorem 1� may be
represented as follows

�(f ) =
∑

|�|�k−2

a�(f )u� +
∑

k−1� |�|�d

D��|�|(f )u�. (20)

Comparing (19) and (20) gives

D�j

�j = D�j

�k−1, j = 1,2.

Passing to the Laplace transform we have

w�j

�̂j (w) = w�j

�̂k−1(w), j = 1,2.

Hence, by the uniqueness principle we can easily see that

�̂1 = �̂2 = �̂k−1

becausê�i and �̂k−1 are entire functions. Consequently,�1 = �2. This contradicts our
construction of�1 and�2. Thus it has been proved that� does not preserve HPDE of
degreek − 1. By use of Corollary 1 we deduce that� does not also preserve HPDE of any
degree smaller thank. �

Corollary 3. Let � be a polynomial projector of degree d preserving HPDE of degree
k, 1�k�d. Then there are functionals�k, �k+1, . . . , �d with �i (1) = 1 (k� i �d) such
that the set

span{D��s : |�| = s, s = k, . . . , d}
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is a proper subset of�(�). Moreover,if � is represented as in(5) with �i (1) = 1, i =
k, . . . , d, and if,for some� with |�|�k, we haveD�� ∈ �(�) then there exists a relation

� = �|�| +
d−|�|∑
j=1

∑
l1l2...lj

cl1l2...lj

�j�|�|+j

�zl1 . . . �zlj

, (21)

where eachlk is taken over{1,2, . . . , n}.

Proof. We just need to prove (21). It follows from (5) that the map

f �→
∑

|�|�k−1

a�(f )u�

is a polynomial projector of degreek−1. In particular, the restrictions of thea�’s are linearly
independent onPk−1(Cn). Now, for some coefficientsc� we have

D�� =
∑

|�|�k−1

c�a� +
∑

k � |�|�d

c�D��|�|. (22)

If follows that for every� with |�|�k − 1, we have

0 =
∑

|�|�k−1

c�a�(u�).

Since the restrictions of thea�’s are linearly independent onPk−1(Cn) we deduce that
c� = 0 for |�|�k − 1. Hence we have

D�� =
∑

k � |�|�d

c�D��|�|.

Now taking the Laplace transforms of both sides and expanding them in power series, we find
by identifying the coefficients that every coefficientc� must vanish if� does not belong to
Z(�) which is the set of all multi-indices� such that|�|�d, �j ��j , j = 1, . . . , n, � �= �.

Taking out the common factorw� on both sides and returning to the functionals, we obtain
the claimed representation.�

4. A characterization of Abel–Gontcharoff projectors

A Birkhoff projectoris called a polynomial projector� for which �(�) is generated
by discrete functionals that is to say by functionals of the formD�[a]. For results on
Birkhoff interpolation we refer to[6]. The following theorem might seem intuitively clear
but we found no immediate proof. It is worth noting that this result is typical for the higher
dimension. It is indeed not true in dimension 1 in which the concept of projector preserving
all HPDE reduces to a triviality.
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Theorem 2. Let� be a Birkhoff projector of degree d onCn, n�2. Then� preserves all
HPDE if and only if it is an Abel–Gontcharoff projector,that is,there area0, . . . , ad ∈ Cn

not necessary distinct such that

�(�) = span{ D�[as] : |�| = s, s = 0, . . . , d }.

Proof. The sufficiency part is trivial. We prove that the condition is necessary. Fork =
0, 1, . . . , d, we set

Ak(�) := {a ∈ Cn : ∃�, |�| = k, D�[a] ∈ �(�)}
andsk = cardAk(�). Whensk �= 0 we define

Ak(�) = {a1
k , a2

k , . . . , a
sk

k },
wherea

j ′
k �= a

j
k for j ′ �= j . It has been shown in[3, Proposition 2] that if� is a polynomial

projector preserving all HPDE and ifD�[a] ∈ �(�) for one multi-index� of lengthk, then
D�[a] ∈ �(�) for every multi-index� of the same lengthk. This implies that

{D�[aj
k ] : k ∈ J, |�| = k, j = 1, . . . , sk} ⊂ �(�),

whereJ is the set of allk such thatAk(�) is not empty. The set on the left-hand side above
will be denoted by�(�). Since this set is linearly independent and since� is a Birkhoff
projector it forms a basis of�(�). Thus, what we need to prove is only thatsk = 1 for
k = 0, 1, . . . , d. For b ∈ Cn, b �= 0, we define the linear mappingb $ · from H ′(Cn) into
H ′(C) as follows

(b $ �)(h) := �(h(b.·)).
It was proved in[3, Proposition 1] that the restriction of this mapping to�(�) is a linear
mapping from�(�) onto�(�b) (see Section 2 for the notation), that is,

b $ �(�) = �(�b).

Step1: We prove that
∑d

k=0 sk = d + 1. Asn > 1, we can choose a (nonzero)b ∈ Cn

so that fork ∈ J the elementsb.a
j
k , j = 1, . . . , sk, are pairwise distinct. From the equality

b $ D�[aj
k ] = b�Dk[b.a

j
k ]

for any multi-index� of lengthk, and the existence of a multi-index� of lengthk such that
b� �= 0, we deduce that the discrete functionals

Dk[b.a
j
k ], k ∈ J, j = 1, . . . , sk, (23)

span�(�b). Moreover, because thesk complex numbersb.a
j
k are pairwise distinct, the

discrete functionals in (23) are linearly independent and, therefore, form a basis of�(�b).

Consequently, we have

dim(�(�b)) =
∑
k∈J

sk (24)

and the claim is proved since dim(�(�b)) = d + 1 and
∑

k∈J sk =
d∑

k=0
sk.
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Step2: We prove thatsk �1 for k = 0, . . . , d. Suppose to the contrary that there isk0
such thatsk0 �2. We can choose a nonzerob∗ ∈ Cn so thatb∗.a1

k0
= b∗.a2

k0
. Then the set

{Dk0[b∗.a
j
k0

], j = 1, . . . , sk0}
contains at mostsk0 − 1 functionals. Consequently, the cardinality of the set

{Dk[b∗.a
j
k ], k ∈ J, j = 1, . . . , sk} (25)

is at most(
∑

k∈J sk)−1 which is, in view of Step 1, not greater thand. This is a contradiction,
because the functionals in (25) span�(�b∗) which has dimensiond + 1.

The two steps imply thatsk = 1 for k = 0, . . . , d, and this concludes the proof.�
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